
CustomDataProviderEC 5.1.5 Documentation 17. November 2003 Page 1

1 Disclaimer

This software is delivered as it is. The author assumes no liability for damages,
direct or consequential, which may result from it’s use.

2 Copyright / Licensing

The software is owned by gig mbh berlin (www.gig-mbh.de).

Two different licenses are available:

1. Free License

Everyone who wants to use the free license has to register with his full
name and address via support@gig-mbh.de.

Every software where parts of our free software were used for development
has to be free also including source code.

If you derive anything from our software it must be clearly stated that it
was derived from it.

Full source code is included.

2. Extended License

Licenses have to be bought by a per developer basis. Site licenses would be
available on demand.

Applications built with this software could be deployed without royalty fees.
They can be sold and don’t need to include source code.

Distribution of a derived version of our software is only allowed with the
explicit agreement of the author.

Full source code is included.

3 Support

Support is available via email at support@gig-mbh.de for free but it need not
remain so in the future.

CustomDataProviderEC 5.1.5 Documentation 17. November 2003 Page 2

4 Introduction

This document describes the function of the component TCustomDataProviderEC.

This class defines an interface to enable our TMemTableEC dataset component to
save and load data from different kind of data storage systems. Implementation is
done by deriving and overwriting a minimum set of it’s virtual methods.

For an example on implementation take a look at our TIBDataProviderEC
component.

The component is completely written in C++ and was developed under C++Builder 5
Pro but it should be usable on C++ Builder 6 if compiled in it’s environment.

Questions, bug reports , enhancement requests, suggestions for improving the docs
and comments should be send to support@gig-mbh.de.

CustomDataProviderEC 5.1.5 Documentation 17. November 2003 Page 3

GetRecord

InsertRecord

5 Methods

Description: Is called whenever a new record from the data store has to be
retrieved. The contens of the record has to be assigned to the
fields of the TMemTableEC dataset. The dataset can be accessed
through the FDataSet pointer.

Prototype : virtual bool __fastcall GetRecord(bool first) = NULL

Parameters: first - If set to true the first record of the data store has to be
retrieved, otherwise the next record has to be retrieved.

Return values : Return true until no more records are available.

Type: public

Description: Is called whenever a new record has to be inserted into the data
store. The fieldvalues can be accessed by the default TDatatSet
properties and methods. The dataset can be accessed through the
FDataSet pointer.

Prototype : virtual void __fastcall InsertRecord(void) = NULL

Parameters: none

Return values : none

Type: public

CustomDataProviderEC 5.1.5 Documentation 17. November 2003 Page 4

DeleteRecord

ModifyRecord

Description: Is called whenever a record has to be deleted from the data store.
The field values can be accessed by the default TDatatSet
properties and methods. The dataset can be accessed through the
FDataSet pointer. If you implement a data provider which does not
support single record changes which save the whole dataset
contens in one pass, this method need not to be implemented.

Prototype : virtual void __fastcall DeleteRecord(void) = NULL

Parameters: none

Return values : none

Type: public

Description: Is called whenever a record has to be modifed in the data store.
The field values can be accessed by the default TDatatSet
properties and methods. For modification in most cases you will
need the know the new and the old field values. By default you
will receive the new field values. Informationon how to switch
between old and new values you will find at the CurRecordBuf
property description. The dataset can be accessed through the
FDataSet pointer. If you implement a data provider which does not
support single record changes which save the whole dataset
contens in one pass, this method need not to be implemented.

Prototype : virtual void __fastcall ModifyRecord(void) = NULL

Parameters: none

Return values : none

Type: public

CustomDataProviderEC 5.1.5 Documentation 17. November 2003 Page 5

RefreshRecord

StartTransaction

Description: Is called whenever a record has to be reread immediately after a
new or modifed record was posted to the data store. This is the
case if the RereadChanges property of the TMemTableEC
component is set to true. If you have a data storage system which
does not apply any changes to new or modifed records by itself
this method need not to be implemented. The field values can be
accessed by the default TDatatSet properties and methods. The
dataset can be accessed through the FDataSet pointer.

Prototype : virtual void __fastcall RefreshRecord(void) = NULL

Parameters: none

Return values : none

Type: public

Description: All read and write operation are allways initiated within a
tranactional context. That means before a series of read or write
operations begins a transaction is allways started and after that
the transaction is allways ended even if any operation in between
fails. The method also gives you the information what kind of
action will follow.

Prototype : virtual void __fastcall StartTransaction(TDataProviderAction
 action) = NULL

Parameters: action - Specifies what kinf of action will take place within this
transaction. Possible values are:

datprLoad - Load was called from the TMemTableEC component

datprSave - Save was called from the TMemTableEC component

datprApplyChg - Any kind of modification was initiated from the
TMemTableEC component (delete, insert or modify record)

datprConRead - Continous read was started (see TMemTableEC
component for further details.

Return values : none

Type: public

CustomDataProviderEC 5.1.5 Documentation 17. November 2003 Page 6

EndTransaction

Description: After finishing a set of read and write operation the current
transaction is allways ended. If you want to distinguish between
committing and rolling back the transaction, you have to take care
of the conditions when you want to rollback and when you want to
commit by yourself.

Prototype : virtual void __fastcall EndTransaction(void) = NULL

Parameters: none

Return values : none

Type: public

CustomDataProviderEC 5.1.5 Documentation 17. November 2003 Page 7

CurRecordBuf

6 Properties

Description: A pointer to the current record buffer. On insert, delete, read and
refresh operations where you only have one record buffer you do
not need to care about it. On modify operations you could assign
FOldRecordBuf or FNewRecordBuf to this property to switch
between the values before and after the modifications. After
switching, all TDataSet field access actions refer to the apropriate
record buffer.

Definition : __property char *CurRecordBuf = {read=GetCurRecordBuf,
write=SetCurRecordBuf}

Type: protected

