
DOADataProviderEC 5.1.5 Documentation 23. September 2003 Page 1

1 Disclaimer

This software is delivered as it is. The author assumes no liability for damages,
direct or consequential, which may result from it’s use.

2 Copyright / Licensing

The software is owned by gig mbh berlin (www.gig-mbh.de).

Two different licenses are available:

1. Free License

Everyone who wants to use the free license has to register with his full
name and address via support@gig-mbh.de.

Every software where parts of our free software were used for development
has to be free also including source code.

If you derive anything from our software it must be clearly stated that it
was derived from it.

Full source code is included.

2. Extended License

Licenses have to be bought by a per developer basis. Site licenses would be
available on demand.

Applications built with this software could be deployed without royalty fees.
They can be sold and don’t need to include source code.

Distribution of a derived version of our software is only allowed with the
explicit agreement of the author.

Full source code is included.

3 Support

Support is available via email at support@gig-mbh.de for free but it need not
remain so in the future.

DOADataProviderEC 5.1.5 Documentation 23. September 2003 Page 2

4 Introduction

This document describes the function of the component TDOADataProviderEC.

This class implements the interface defined in TDataProviderEC to synchronise our
TMemTableEC dataset component with Oracle database systems. Therefore it uses
core components of DOA (Direct Oracle Access from Allround Automations which
also has to be included in your project.

For working properly you have to specify a separate query for every task you want
the provider to handle (retrieve, modify, delete, insert, refresh) and secondly to
specify field assignments where you specify which filelds in the database belong to
which fields in the TMemTableEC component.

The component is completely written in C++ and was developed under C++Builder 5
Pro but it should be usable on C++ Builder 6 if compiled in it’s environment.

Questions, bug reports , enhancement requests, suggestions for improving the docs
and comments should be send to support@gig-mbh.de.

DOADataProviderEC 5.1.5 Documentation 23. September 2003 Page 3

Open

Close

5 Methods

Description: Makes the dataprovider active. That means a connection to the
database server is established.

Prototype : void __fastcall Open(void)

Parameters: none

Return values : none

Type: public

Description: Makes the dataprovider inactive. That means the connection to the
database server is closed.

Prototype : void __fastcall Open(void)

Parameters: none

Return values : none

Type: public

DOADataProviderEC 5.1.5 Documentation 23. September 2003 Page 4

Active

Session

AutoEndTransaction

6 Properties

Description: See methods Open and Close.

Definition : __property bool Active = {read=FActive, write=SetActive,
 default=false}

Type: published

Description: Specifies a TOracleSession component (DOA) which will be used to
establish a connection to the database.

Definition : __property TOracleDatabase *Database = {read=GetDatabase,
 write=SetDatabase, default=NULL}

Type: published

Description: When the action of the provider has finished it ends the
transaction if this property is set to true otherwise the transaction
stays active. If the provider is responsible for ending transactions
it is guaranteed that all modifications are made permanent. If
anything went wrong the transaction is allways rolled back
otherwise committed.

Definition : __property bool AutoEndTransaction = {read=FAutoEndTransaction,
 write=FAutoEndTransaction, default=true}

Type: published

DOADataProviderEC 5.1.5 Documentation 23. September 2003 Page 5

FieldAssignments

SelectSQL

Description: This property specifies the releation between TMemTableEC and
the database fields of the different queries. For every field
assignment you specify one line in the following syntax:
<memtabfield>;<dbqueryfield>. It is allways assumed that
database fieldnames and query variables which belong together
also have given the same name.
For update actions you could refer to the unchanged (old) values
of a TmemTableEC field by inserting the prefix „OLD_” for
<memtabfield> and „NEW_” for the changed (new) value. Without
prefix the new value is used. Do not use TMemTableEC field names
which natively begin with these prefixes as they would confuse the
old/new record switching mechanism of the data provider. If you
want to have fields in the TMemTabEC data set which have no
direct related field in your database but are derived from them in
any way you could insert a so called virtual field (simply a
field/parameter name which does no exist in any query) and
assign/get the transformed values in the data provider’s
SetMemTabFieldValue and SetDbFieldValue event handlers.

Definition : __property TDOADPFields *FieldAssignment =
 {read=FFieldAssignment, write=SetFieldAssignment}

Type: published

Description: SQL query for retrieving records. This property is necessary for
every data provider.

Definition : __property TStrings *SelectSQL = {read=GetSelectSQL,
write=SetSelectSQL}

Type: published

DOADataProviderEC 5.1.5 Documentation 23. September 2003 Page 6

ModifySQL

InsertSQL

DeleteSQL

Description: SQL query for modifying a record. This property is only necessary if
you want to apply updates from the TMemTableEC dataset to the
database. You should use the unchanged („OLD_” prefixed) field
value of a column which uniquely identifies a record row in the
WHERE clause of this query. If you want to be sure that no other
columns have been changed by concurrent users/transactions
meanwhile you could add their unchanged values in the WEHRE
clause as well.

Definition : __property TStrings *ModifySQL = {read=GetModifySQL,
 write=SetModifySQL}

Type: published

Description: SQL query for inserting new records. This property is only
necessary if you want to insert new records from the
TMemTableEC dataset to the database.

Definition : __property TStrings *InsertSQL = {read=GetInsertSQL,
 write=SetInsertSQL}

Type: published

Description: SQL query for deleting records. This property is only necessary if
you want to delete records from the database which have been
removed from the TMemTableEC.

Definition : __property TStrings *DeleteSQL = {read=GetDeleteSQL,
 write=SetDeleteSQL}

Type: published

DOADataProviderEC 5.1.5 Documentation 23. September 2003 Page 7

RefreshSQL

SelectVariables

SelectQry

Description: SQL query for re-retrieving records after they have been modified
or inserted. This property is only necessary if you set the
RereadChanges property of the TMemTableEC dataset to true. You
should include a column which uniquely identifies a record row in
the WHERE clause of this query.

Definition : __property TStrings *RefreshSQL = {read=GetRefreshSQL,
 write=SetRefreshSQL}

Type: published

Description: Here you could make declarations for the variables if you have a
parametrised select query. For a detailed explanation see the DOA
dokumantation.

Definition : __property TVariables *SelectVariables =
 {read=GetSelectVariables,
 write=SetSelectVariables}

Type: published

Description: Pointer to the TOracleQuery component which handles the
SelectSQL query statement.

Definition : __property TOracleQuery *SelectQry = {read=FSelectQry}

Type: public

DOADataProviderEC 5.1.5 Documentation 23. September 2003 Page 8

ModifyQry

InsertQry

DeleteQry

RefreshQry

Description: Pointer to the TOracleQuery component which handles the
ModifySQL query statement.

Definition : __property TOracleQuery *ModifyQry = {read=FModifyQry}

Type: public

Description: Pointer to the TOracleQuery component which handles the
InsertSQL query statement.

Definition : __property TOracleQuery *InsertQry = {read=FInsertQry}

Type: public

Description: Pointer to the TOracleQuery component which handles the
DeleteSQL query statement.

Definition : __property TOracleQuery *DeleteQry = {read=FDeleteQry}

Type: public

Description: Pointer to the ToracleQuery component which handles the
RefreshSQL query statement.

Definition : __property ToracleQuery *RefreshQry = {read=FRefreshQry}

Type: public

DOADataProviderEC 5.1.5 Documentation 23. September 2003 Page 9

SetMemTabFieldValue

SetDbFieldValue

7 Events

Description: This event is fired whenever the value from a query field was
assigned to a field of the TMemTableEC dataset. Here it is possible
to change the assigned value. If you have stated virtual fields in
the FieldAssignments property, the assignment of their values can
be made inside this event handler. The FieldName parameter
contains the TMemTableEC field name of the FieldAssignments
property.

Handler : void __fastcall (__closure *TDOADPFieldEvent)
 (TField *memtabfield,
 int dbfldidx, const AnsiString &FieldName,

 TOracleQuery *qry)

Type: published

Description: This event is fired whenever the value from a TMemTableEC
dataset field was assigned to a field of a query. Here it is possible
to change the assigned value. If you have stated virtual fields in
the FieldAssignments property, the assignment of their values can
be made inside this event handler. The FieldName parameter
contains the query field name of the FieldAssignments property.

Handler : void __fastcall (__closure *TDOADPFieldEvent)
 (TField *memtabfield,
 int dbfldidx, const AnsiString &FieldName,

 TOracleQuery *qry)

Type: published

