
IBDataProviderEC 5.1.5 Documentation 14. Septermber 2003 Page 1

1 Disclaimer

This software is delivered as it is. The author assumes no liability for damages,
direct or consequential, which may result from it’s use.

2 Copyright / Licensing

The software is owned by gig mbh berlin (www.gig-mbh.de).

Two different licenses are available:

1. Free License

Everyone who wants to use the free license has to register with his full
name and address via support@gig-mbh.de.

Every software where parts of our free software were used for development
has to be free also including source code.

If you derive anything from our software it must be clearly stated that it
was derived from it.

Full source code is included.

2. Extended License

Licenses have to be bought by a per developer basis. Site licenses would be
available on demand.

Applications built with this software could be deployed without royalty fees.
They can be sold and don’t need to include source code.

Distribution of a derived version of our software is only allowed with the
explicit agreement of the author.

Full source code is included.

3 Support

Support is available via email at support@gig-mbh.de for free but it need not
remain so in the future.

IBDataProviderEC 5.1.5 Documentation 14. Septermber 2003 Page 2

4 Introduction

This document describes the function of the component TIBDataProviderEC.

This class implements the interface defined in TDataProviderEC to synchronise our
TMemTableEC dataset component with Interbase or Firebird database systems.
Therefore it uses core components of InterbaseExpress (IBX) which also has to be
included in your project.

For working properly you have to specify a separate query for every task you want
the provider to handle (retrieve, modify, delete, insert, refresh) and secondly to
specify field assignments where you specify which filelds in the database belong to
which fields in the TMemTableEC component.

The component is completely written in C++ and was developed under C++Builder 5
Pro but it should be usable on C++ Builder 6 if compiled in it’s environment.

Questions, bug reports , enhancement requests, suggestions for improving the docs
and comments should be send to support@gig-mbh.de.

IBDataProviderEC 5.1.5 Documentation 14. Septermber 2003 Page 3

Open

Close

5 Methods

Description: Makes the dataprovider active. That means a connection to the
database server is established.

Prototype : void __fastcall Open(void)

Parameters: none

Return values : none

Type: public

Description: Makes the dataprovider inactive. That means the connection to the
database server is closed.

Prototype : void __fastcall Open(void)

Parameters: none

Return values : none

Type: public

IBDataProviderEC 5.1.5 Documentation 14. Septermber 2003 Page 4

Active

Database

Transaction

6 Properties

Description: See methods Open and Close.

Definition : __property bool Active = {read=FActive, write=SetActive,
 default=false}

Type: published

Description: Specifies a TIBDatabase components (IBX) which will be used to
establish a connection to the database.

Definition : __property TIBDatabase *Database = {read=GetDatabase,
 write=SetDatabase, default=NULL}

Type: published

Description: Specifies a TIBTransaction components (IBX) which will be used to
handle transactions for the actions performed.

Definition : __property TIBTransaction *Transaction = {read=GetTransaction,
 write=SetTransaction, default=NULL}

Type: published

IBDataProviderEC 5.1.5 Documentation 14. Septermber 2003 Page 5

AutoEndTransaction

FieldAssignments

Description: Whenever an action is performed by the data provider a
transaction is started if not currently done. When the action of the
provider has finished it ends the transaction if this property is set
to true otherwise the transaction stays active. If the provider is
responsible for ending transactions it is guaranteed that no
transaction stays active after the provider has performed a set of
modify or retrieve actions. If anything went wrong the transaction
is allways rolled back otherwise committed.

Definition : __property bool AutoEndTransaction = {read=FAutoEndTransaction,
 write=FAutoEndTransaction, default=true}

Type: published

Description: This property specifies the releation between TMemTableEC and
the database fields of the different queries. For every field
assignment you specify one line in the following syntax:
<memtabfield>;<dbqueryfield>. It is allways assumed that
database fieldnames and query variables which belong together
also have given the same name.
For update actions you could refer to the unchanged (old) values
by inserting the prefix „OLD_” for <memtabfield> and „NEW_” for
the changed (new) value. Without prefix the new value is used. Do
not use TMemTableEC field names which natively begin with these
prefixes as they would confuse the old/new record switching
mechanism of the data provider. If you want to have fields in the
TMemTabEC data set which have no direct related field in your
database but are derived from them in any way you could insert a
so called virtual field (simply a field/parameter name which does
no exist in any query) and assign/get the transformed values in the
data provider’s SetMemTabFieldValue and SetDbFieldValue event
handlers.

Definition : __property TIBDPFields *FieldAssignment =
 {read=FFieldAssignment, write=SetFieldAssignment}

Type: published

IBDataProviderEC 5.1.5 Documentation 14. Septermber 2003 Page 6

SelectSQL

ModifySQL

InsertSQL

Description: SQL query for retrieving records. This property is necessary for
every data provider.

Definition : __property TStrings *SelectSQL = {read=GetSelectSQL,
write=SetSelectSQL}

Type: published

Description: SQL query for modifying a record. This property is only necessary if
you want to apply updates from the TMemTableEC dataset to the
database. You should use the unchanged („OLD_” prefixed) field
value of a column which uniquely identifies a record row in the
WHERE clause of this query. If you want to be sure that no other
columns have been changed by concurrent users/transactions
meanwhile you could add their unchanged values in the WEHRE
clause as well.

Definition : __property TStrings *ModifySQL = {read=GetModifySQL,
 write=SetModifySQL}

Type: published

Description: SQL query for inserting new records. This property is only
necessary if you want to insert new records from the
TMemTableEC dataset to the database.

Definition : __property TStrings *InsertSQL = {read=GetInsertSQL,
 write=SetInsertSQL}

Type: published

IBDataProviderEC 5.1.5 Documentation 14. Septermber 2003 Page 7

DeleteSQL

RefreshSQL

SelectQry

ModifyQry

Description: SQL query for deleting records. This property is only necessary if
you want to delete records from the database which have been
removed from the TMemTableEC.

Definition : __property TStrings *DeleteSQL = {read=GetDeleteSQL,
 write=SetDeleteSQL}

Type: published

Description: SQL query for re-retrieving records after they have been modified
or inserted. This property is only necessary if you set the
RereadChanges property of the TMemTableEC dataset to true. You
should include a column which uniquely identifies a record row in
the WHERE clause of this query.

Definition : __property TStrings *RefreshSQL = {read=GetRefreshSQL,
 write=SetRefreshSQL}

Type: published

Description: Pointer to the TIBSQL component which handles the SelectSQL
query statement.

Definition : __property TIBSQL *SelectQry = {read=FSelectQry}

Type: public

Description: Pointer to the TIBSQL component which handles the ModifySQL
query statement.

Definition : __property TIBSQL *ModifyQry = {read=FModifyQry}

Type: public

IBDataProviderEC 5.1.5 Documentation 14. Septermber 2003 Page 8

InsertQry

DeleteQry

RefreshQry

Description: Pointer to the TIBSQL component which handles the InsertSQL
query statement.

Definition : __property TIBSQL *InsertQry = {read=FInsertQry}

Type: public

Description: Pointer to the TIBSQL component which handles the DeleteSQL
query statement.

Definition : __property TIBSQL *DeleteQry = {read=FDeleteQry}

Type: public

Description: Pointer to the TIBSQL component which handles the RefreshSQL
query statement.

Definition : __property TIBSQL *RefreshQry = {read=FRefreshQry}

Type: public

IBDataProviderEC 5.1.5 Documentation 14. Septermber 2003 Page 9

SetMemTabFieldValue

SetDbFieldValue

7 Events

Description: This event is fired whenever the value from a query field was
assigned to a field of the TMemTableEC dataset. Here it is possible
to change the assigned value. If you have stated virtual fields in
the FieldAssignments property, the assignment of their values can
be made inside this event handler. The FieldName parameter
contains the TMemTableEC field name of the FieldAssignments
property.

Handler : void __fastcall (__closure *TIBDPFieldEvent)(TField *memtabfield,
 TIBXSQLVAR *dbfield,
 const AnsiString &FieldName,

 TIBXSQLDA *rec)

Type: published

Description: This event is fired whenever the value from a TMemTableEC
dataset field was assigned to a field of a query. Here it is possible
to change the assigned value. If you have stated virtual fields in
the FieldAssignments property, the assignment of their values can
be made inside this event handler. The FieldName parameter
contains the query field name of the FieldAssignments property.

Handler : void __fastcall (__closure *TIBDPFieldEvent)(TField *memtabfield,
 TIBXSQLVAR *dbfield,
 const AnsiString &FieldName,

 TIBXSQLDA *rec)

Type: published

