
IBScrollSetEC 5.0.5 Documentation 15. July 2003 Page 1

1 Disclaimer

This software is delivered as it is. The author assumes no liability for damages,
direct or consequential, which may result from it’s use.

2 Copyright / Licensing

The software is owned by gig mbh berlin (www.gig-mbh.de).

Two different licenses are available:

1. Free License

Everyone who wants to use the free license has to register with his full
name and address via support@gig-mbh.de.

Every software where parts of our free software were used for development
has to be free also including source code.

If you derive anything from our software it must be clearly stated that it
was derived from it.

Full source code is included.

2. Extended License

Licenses have to be bought by a per developer basis. Site licenses would be
available on demand.

Applications built with this software could be deployed without royalty fees.
They can be sold and don’t need to include source code.

Distribution of a derived version of our software is only allowed with the
explicit agreement of the author.

Full source code is included.

3 Support

Support is available via email at support@gig-mbh.de for free but it need not
remain so in the future.

IBScrollSetEC 5.0.5 Documentation 15. July 2003 Page 2

4 Introduction

This component is a direct TDataSet descendant which could be integrated
seamless with all other existing IBX components. It links to the same components
(TIBDatabase, TIBTransaction) and uses the same core component (TIBSQL) like
TIBTable and TIBDataSet internally.

It's special purpose is to access large datasets in a table like manner without some
of the restrictions you will find when using TIBTable and TIBDataSet. On navigating
to a specific record via key values in contrast to the standard IBX controls only the
records necessary for display will be fetched and buffered . Also committing and
restarting a transaction will not invalidate the current record pointer.

Of course it could also be used to access small datasets, but the benefits you will
get over using TIBTable and TIBDataSet are much more noticable on large datasets.

If you want to get smaller result sets of queries which take a very long time to
execute it is much more preferable to use our in-memory table TMemTableEC in
conjunction with our Interbase data provider TIBDataProvider instead.

Allways keep in mind that this component tries not to achive all possible IB tasks in
a perfect manner. Instead it is intended to do some very special tasks efficiently.
The key to success is to choose the right component for the specific problem you
have to solve. Therefore you could mix it with other IBX component without any
problem.

To fulfill it's task the component maintains several queries internally and modifies
them in a way that only the records necessary for display will be fetched.

The basic requirement to work efficient is to have an ascending and a descending
index on every column you wish to be used for sorting and these columns must not
contain NULL values. The reason for this restriction is that NULL columns are
allways retrieved last no matter if the sort order is specified to be ascending or
descending and this makes internal repositioning impossible on those columns. This
requirement could easily be arranged for string fields by specifying a trigger setting
the column to ‘’ (empty string) if the column is NULL as empty strings are
considered to be the lowest possible value for string columns and so are sorted
correctly.

Secondly the sortorder specified must represent a unique value. The reason for this
is that the ascending and the descending sortorder must result in an exactly
reverse order of the retrieved rows. If the sortorder represents a non unique value
the order in which the rows for duplicate values are retrieved is undefined.
To achive sorting of non unique columns simply append the primary key to the
order by clause.

If you use a small dataset only having a few hundred records there is no need to
have any indexes at all but on dataset having a few 100,000 records this is
mandatory.

IBScrollSetEC 5.0.5 Documentation 15. July 2003 Page 3

The porperties you have to specify at least for a fully functional (editable) dataset
are only Database, Transaction, SelectSQL and KeyColumns.

The component is completely written in C++ and was developed under C++Builder 5
Pro but it should be usable on C++ Builder 6 if compiled in it’s environment.

Please allways ensure that you are using the latest IBX components available from
Jeff Overcash's Homepage, because many issues have been fixed since it was
shipped with C++Buider 5.

Questions, bug reports , enhancement requests, suggestions for improving the docs
and comments should be send to support@gig-mbh.de.

IBScrollSetEC 5.0.5 Documentation 15. July 2003 Page 4

GotoBookmark

RefreshActiveRecord

LockRecord

5 Methods

Description: Sets the cursor to a record which was previously marked by
GetBookmark

Prototype : void __fastcall GotoBookmark(void *bookmark, bool center)

Parameters: bookmark - spcifies a pointer which was previously returned by a
call to GetBookmark.

center - if true the record is centered within a linked grid control,
otherwise the current row is kept.

Return values : none

Type: public

Description: Refreshes the currently active record

Prototype : void __fastcall RefreshActiveRecord(void)

Parameters: none

Return value : none

Type: public

Description: Locks the current record

Prototype : void __fastcall LockRecord(void)

Parameters: none

Return value : none

Type: public

IBScrollSetEC 5.0.5 Documentation 15. July 2003 Page 5

SetKey

GotoKey

Description: Use the SetKey method to change the dataset state to dsSetKey.
After that you could set key values for locating to another record
by calling GotoKey

Prototype : void __fastcall SetKey(bool clear = true)

Parameters: clear - spcifies if the record buffer should be cleard or if the
values of the current record are maintained.

Return value : none

Type: public

Description: Use the GotoKey method to locate to a new record which was
specified by a previous call to SetKey. If the method fails the
current record is maintained.

Prototype : bool __fastcall GotoKey(bool exact = true,
 bool pkey = false,
 int colcount = -1,
 bool center = true)

Parameters: exact - if set to true the call is only successful if the key values
exacly match a record. If set to false the next record according to
the current sort order is retrieved if no matching record is found.

pkey - if set to false the method uses the key values of the current
sortorder otherwise the key values of the primary key (specified by
the KeyColumns property) are used.

colcount - if -1 is specified all columns of the key are used for
searching, otherwise the first n columns of the key are used.

center - if true the record is centered within a linked grid control,
otherwise the current row is kept.

Return value : true if the function succeeds, false if not.

Type: public

IBScrollSetEC 5.0.5 Documentation 15. July 2003 Page 6

Sync

CreateBlobStream

Description: Use this method to syncronise the record position of two
IBScrollSetEC datasets. It is also possible to sync two datasets
which have a different record layout. The only thing necessary is
that both datasets have compatible field types specified in their
KeyColumns property. If sync fails an exception is rasied.

Prototype : void __fastcall Sync(TIBScrollSetEC *from, bool center = true)

Parameters: from - the dataset from which the current record location is taken
for syncronisation.

center - if true the record is centered within a linked grid control,
otherwise the current row is kept.

Return value : none.

Type: public

Description: Described in the TDataSet documentation of the VCL.

IBScrollSetEC 5.0.5 Documentation 15. July 2003 Page 7

Params

Database

Transaction

SelectSQL

6 Properties

Description: Described in the TIBSQL documentation of the VCL.

Type: public

Description: Specifies the database this component will conntect to.

Definition : __property TIBDatabase *Database = {read=GetDatabase,
 write=SetDatabase}

Type: published

Description: Specifies the transaction this component will use.

Definition : __property TIBTransaction *Transaction = {read=GetTransaction,
 write=SetTransaction}

Type: published

Description: Specifies the SQL code which will be executed as query.
Attention : if no OrderItemId property is specified the query must
contain a order by clause

Definition : __property TStrings *SelectSQL = {read=GetSelectSQL,
write=SetSelectSQL}

Type: published

IBScrollSetEC 5.0.5 Documentation 15. July 2003 Page 8

ModifySQL

InsertSQL

WhereClause

Description: Every line contains a value assignment of the following form:
<column>=<value> for applying the modifications made on the
current record. Value could be a DataSet field name prefixed by a
‘:’ or any other valid expression for value assignments within an
UPDATE SQL statement. If this property is not specified a default
is generated.

Definition : __property TStrings *ModifySQL = {read=GetModifySQL,
 write=SetModifySQL}

Type: published

Description: Every line contains a value assignment of the following form:
<column>=<value> for applying the values on a newly inserted
record. Value could be a DataSet field name prefixed by a ‘:’ or
any other valid expression for value assignments within an INSERT
SQL statement. If this property is not specified a default is
generated.

Definition : __property TStrings *InsertSQL = {read=GetInsertSQL,
 write=SetInsertSQL}

Type: published

Description: This property represents the WHERE clause of the SelectSQL
property. It is possible to change this value at runtime to achieve
dynamic server side filtering. After changing this property the
method Refresh should be called to reflect the changes. The active
record is maintained after this call (Exception : the active record
does not match the new filter condition)

Definition : __property AnsiString WhereClause = {read=GetWhereClause,
 write=SetWhereClause,
 stored=false}

Type: published

IBScrollSetEC 5.0.5 Documentation 15. July 2003 Page 9

KeyColumns

MainTable

ReadOnly

Description: Specifies the unique identifiers of a single row. This property must
allways be specified in the form <column> [;<column> ...]

Definition : _property TIBSSOrderItems *OrderItems = {read=GetOrderItems,
 write=SetOrderItems}

Type: published

Description: For query generation it is allways assumed that the first table
specified whithin the FROM clause is ment to be the main table
(The main table is that one on which insertions and modifications
will be applied). If you do not want the first table to be the main
table within a multi table query (e.g. for optimization reasons) you
could specify its name here.

Definition : __property AnsiString MainTable = {read=FMainTable,
 write=SetMainTable}

Type: published

Description: If set to true modifications through data-sensitive controls is no
longer possible.

Definition : __property bool ReadOnly = {read=FReadOnly, write=FReadOnly,
 default=false};

Type: published

IBScrollSetEC 5.0.5 Documentation 15. July 2003 Page 10

GeneratorFields

OrderItems

Description: This property links generators to table fields in the format
<fieldname>;<generator_name>;<increment>. This property is
necessary to create autoincrement fields on new records so that
the dataset component is able to keep track of a newly inserted
record. If you would assign a new key value via a trigger the
dataset will loose focus on it after it was posted. You must not
assign this generator also via a trigger on that table otherwise it
fill be fired twice. Beware that fieldname specifies the datataset
fieldname and not the column name which may vary if you use
aliases.

Definition : __property TIBSSGeneratorFields *GeneratorFields =
 {read=FGeneratorFields,

 write=SetGeneratorFields}

Type: published

Description: Specifies different sort orders for the dataset you could switch
between during runtime in the following form for every line:
<id>;<clause>. Id is a positive numeric value the sortorder will be
referenced by. Clause is the ascending order clause you want to
assign for this id. (the descending sortorder is generated
automatically). You could switch between the sort orders via
SortOrderId property. When switching between sortorders the
active record will allways be maintained.

Definition : __property TIBSSOrderItems *OrderItems = {read=GetOrderItems,
 write=SetOrderItems}

Type: published

IBScrollSetEC 5.0.5 Documentation 15. July 2003 Page 11

OrderItemId

PessimisticLocking

RefreshBeforeEdit

Description: Use this property to switch between the different sort orders
which have been specified by the OrderItems property. The active
record will allways be maintained. If 0 (zero) is specified the sort
order of the querie’s ORDER BY clause is used. A negative value
can be used to revert the order of a referenced OrderItem.

Definition : __property int OrderItemId = {read=GetOrderItemId,
 write=SetOrderItemId, default=0}

Type: published

Description: You could choose between optimistic (default) and pessimistic
locking mode when modifying records. With pessimistic locking
records are locked before the dataset switches to edit mode. The
behavour is also interrelated to the isolation mode of the assigned
transaction. As a guidline the following combinations are useful:
optimistic + snapshot or pessimistic + read_commited.

Definition : __property bool PessimisticLocking = {read=FPessimisticLocking,
 write=SetPessimisticLocking,
 default=false}

Type: published

Description: If set to true the current record is reread before switching to edit
mode to refrect any changes which have been made since it was
last read. This is useful in combination of pessimistic locking and
read_commited transaction to ensure the most current data is
presented after the record has been locked.

Definition : __property bool RefreshBeforeEdit = {read=FRefreshBeforeEdit,
 write=FRefreshBeforeEdit,
 default=false}

Type: published

IBScrollSetEC 5.0.5 Documentation 15. July 2003 Page 12

GetRecordsOnOpen

Suspend

Active

AutoCalcField

Filtered

Description: Setting to false prevents fetching records on activating the
dataset. This could be useful if it is desired to set filters or to
locate to a specific record directly after opening the dataset.

Definition : __property bool GetRecordsOnOpen = {read=FGetRecordsOnOpen,
 write=FGetRecordsOnOpen,
 default=true}

Type: published

Description: Setting to false prevents fetching records. When setting back to
true Refresh has to be called explicity to fetch the current
records. This property could be used to prevent unnecessary
fetching of records esp. for applications operating over a WAN link.
Records for example are fetched when the dataset is assigned to a
datasource or when it is opened.

Definition : __property bool Suspend = {read=FSuspend, write=FSuspend,
default=false}

Type: published

Description: Described in the TDataSet documentation of the VCL.

Description: Described in the TDataSet documentation of the VCL.

Description: Described in the TDataSet documentation of the VCL.

IBScrollSetEC 5.0.5 Documentation 15. July 2003 Page 13

OnCreateFields

7 Events

Description: This event is fired just after the field objects have been created
and before they are bind to the dataset. If you want to define
calculated fields and don’t want to use the object inspector you
can do it here.

Handler : void __fastcall (__closure *TNotifyEvent)(TObject *Sender)

Type: published

For a description of the additional events available take a look at the VCL docs of
the TDataSet component.

